Karakteristik Komputasi Penentuan Akar Kuadrat Bilangan Nonkuadrat Sempurna Beberapa Metode Iteratif Menggunakan Pemograman QBasic

Authors

  • Endaryono Endaryono Universitas Indraprasta PGRI

DOI:

https://doi.org/10.37640/jip.v11i2.92

Keywords:

analytic method, nonrational square root, iterative, QBasic

Abstract

The completion of some mathematics problem not only used analytic methods but also by iterative processes through numerical methods. In numerical methods, besides students understood the calculation each iteration manually but also was necessary to understand the completion using coding or programming. QBasic is one program was easily downloaded. This paper discusses the determination of integer roots that are not perfect square numbers, namely a square root of 3 using numerical methods with iterative techniques. The purpose of writing is to look at computational characteristics in number iterations of Heron method, for two, false positions, and Newton Raphson. Research through simulations using QBasic promotion. The error value (error) in the simulation performed using the method is set at a value of 1x10-10 or iteration will still be if the error rate is more than the specified error value. The simulation results show that the error value of the square root of the number 3 ranges at 1.73205. The Heron method and the Newton Raphson method have the same number of iterations, which are 6 iterations, relatively less than other iterative methods. The conclusion of the research is the determination of the root of the citrate from the number 3 Heron method and Newton Raphson method provide a better computational performance of the number of iterations than the method for two and the false position.

Downloads

Download data is not yet available.

References

Dellajustina, F. J., & Martins, L. C. (2014). The Hidden Geometry of the Babylonian Square Root Method. Applied Mathematics, 5(19), 2982.

Endaryono, E. (2018). Perbandingan Kinerja Metode Barisan Fibonacci dan Regula False dalam Penentuan Perbandingan emas. Faktor Exacta Jurnal Ilmiah Teknologi, 11(4), 322-331.

Hutagalung, S. N. (2017). Pemahaman Metode Numerik (Studi Kasus Metode Newton Raphson) menggunakan Pemograman matlab. Jurnal Teknologi Informasi (JurTI), 1(1), 95-100.

Iqbal W, M., Djuriatno, W., & Aswin, M. (2014). Implementasi Algoritma Pencarian Akar Kuadrat Bilangan Positif. Jurnal Mahasiswa TEUB, 2(2), 1-5.

Jumiasari, E., Bahri, S., & Ginting, B. (2016). Penyelesaian Persamaan Nonlinier dengan Metode Modifikasi Bagi Dua. Jurnal matematika UNAND, 4(1), 68-75.

Luknanto, D. (2001). Metode Numerik: Bahan kuliah Metoda Numerik Jurusan Teknik Sipil. Yogyakarta: Universitas Gadjah Mada.

Nugroho, D.B. (2009). Metode Numerik: Diktat Kuliah Program Studi matematika. Salatiga: Universitas Kristen Satya Wacana.

Rahayuni, I. A. E., Dharmawan, K., & Harini, L. P. I. (2016). Perbandingan Keefesienan metode Newton Raphson, metode Secant dan metode Bisection dalam mengestimasi Implied Volatilities Saham. E-Jurnal Matematika, 5(1), 1-6.

Rochmad, R. (2013). Aplikasi Metode Newton-Raphson untuk menghampiri Solusi persamaan Nonlinier. Jurnal MIPA, 36(2), 193-200.

Wells, D. (1997). The Penguin dictionary of curious and interesting numbers. Penguin.

Wulan, E. R., Sukarti, S. M., & Zulkarnaen, D. (2016). Perbandingan Tingkat Kecepatan Konvergensi dari Metode Newton Raphson dan Metode Secant Setelah Mengaplikasikan Metode Aiken’s dalam Perhitungan Akar Pangkat Tiga. Jurnal Matematika Integratif, 12(1), 35-42.

Yuliza, E. (2013). Penggunaan Metode Bagi Dua Terboboti untuk Mencari Akar-akar Suatu Persamaan. Jurnal Penelitian Sains, 16(1A), 161011-161016.

Downloads

Published

2020-01-10