

Intended Statistics Curriculum at the Elementary Level: Thailand vs. Indonesia

Dhanachat Anuniwat^{1*}, Yoga Dwi Windy Kusuma Ningtyas^{1,2}

¹Graduate School of Humanities and Social Sciences, Hiroshima University, Japan ²Department of Mathematics Education, Universitas Muhammadiyah Jember, Indonesia *d245626@hiroshima-u.ac.jp

Article Info	Abstract
	Mathematics occupies a central role in school education, with the
Received	mathematics curriculum serving as a critical tool for guiding curriculum
September 21, 2024	reform. To identify the need for reform in specific contexts, it is
	necessary to examine curricula from a comparative perspective. Such an
Revised	approach can yield valuable insights into the directions and priorities for
November 1, 2024	curriculum reform. Accordingly, this study examined the current status
	of the intended statistics curriculum in Thailand and Indonesia. A
Accepted	qualitative content analysis was employed as the research design, with
November 22, 2024	one mathematics curriculum document from Thailand and one from
	Indonesia purposively selected for analysis. The findings reveal that, in
	the domain of statistics, Indonesia introduces probability alongside
Keywords	statistics at the elementary level, whereas Thailand does not include
•	probability at this stage. Furthermore, both countries place limited
Indonesia; Intended	emphasis on incorporating a comprehensive statistical problem solving
Curriculum;	process within their curricula. It is important to note that this study
Statistics Education;	focuses exclusively on the intended curriculum; further research is
Thailand.	required to provide a more nuanced understanding.

This is an open access article under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License

How to Cite:

Anuniwat, D., & Ningtyas, Y. D. W. K. (2024). Intended Statistics Curriculum at the Elementary Level: Thailand vs. Indonesia. *Journal of Instructional Mathematics*, 5(2), 108-120.

INTRODUCTION

The mathematics curriculum has long served as a cornerstone of school education and is recognized as a vital tool for reforming mathematics teaching and learning (Baba, 2010). Over the years, reform efforts have sought to broaden and deepen school mathematics, aiming to prepare students for further academic pursuits while enhancing national competitiveness in an increasingly globalized world (Lloyd et al., 2017). Achieving these dual objectives requires a mathematics curriculum design that aligns with both national priorities and global perspectives. However, curriculum designs vary extensively across countries, reflecting diverse educational philosophies, goals, and challenges. Cross-national curriculum studies in mathematics education enable educators and researchers to understand these variations, offering insight into how different education systems address similar

challenges, understand the intended learning content in various countries, and share effective teaching and learning strategies for mathematics across borders (Schmidt et al., 2017; Schmidt et al., 2005).

To conduct such cross-curricular studies, several foundational inquiries must be addressed (Elbehary, 2020). These include determining which countries or jurisdictions should be selected for study, identifying which mathematical content areas should be prioritized and why, deciding which aspects of the mathematics curriculum should be the focus of examination, and exploring how insights can be derived from the study.

To address the first inquiry, this study selected Thailand and Indonesia as the focus for examination. The rationale for selecting these countries is outlined below. First, both Thailand and Indonesia share a commitment to sustainable development, as evidenced by their active participation in the United Nations' 2030 Agenda for Sustainable Development. Additionally, both countries aim to enhance education quality, with a particular emphasis on achieving Sustainable Development Goal (SDG) 4 (Sachs et al., 2024). Beyond these shared objectives, the educational systems in both countries exhibit similar foundational characteristics. For instance, each country's education system is governed by a national curriculum: Thailand's Basic Education Core Curriculum is administered by the Ministry of Education (Ministry of Education Thailand [MoET], 2008, 2017), while Indonesia's Merdeka Curriculum is managed by the Ministry of Education, Culture, Research, and Technology and the Ministry of Religious Affairs (Ministry of Education Culture Research and Technology of the Republic of Indonesia [MoECRT], 2024). Elementary education in both countries spans grades 1 to 6, although the gradelevel organization differs slightly. In Thailand, education is organized by individual grades (1 through 6), whereas in Indonesia, the curriculum is divided into phases: Phase A (grades 1–2), Phase B (grades 3–4), and Phase C (grades 5–6). Despite these terminological differences, the overall structure of elementary education is comparable in both countries. Furthermore, mathematics is a compulsory subject in both systems.

Thailand and Indonesia also share similar economic development contexts (Asian Development Bank, 2024), and students in both countries demonstrate comparable performance in international assessments, such as the Programme for International Student Assessment (PISA) and the Trends in International Mathematics and Science Study (TIMSS). However, research on statistics education in Thailand remains relatively limited (e.g., González et al., 2020; González, 2023), as evidenced by the lower number of papers presented at international conferences and fewer publications in leading statistics education journals, such as the Statistics Education Research Journal and the Journal of Statistics Education. In contrast, Indonesia boasts a more active community of scholars conducting research in this field (e.g., Kurnia et al., 2024), as highlighted in the research chapter on mathematics education by Langrall et al. (2017). This disparity suggests that Thailand, currently in the early stages of developing its statistics education research, could benefit from leveraging the experiences and insights gained by Indonesia in this domain.

Addressing the second inquiry, it is essential to consider the international assessment performance of students in both countries (i.e., PISA and TIMSS), as these results help identify priority content areas for study and provide a shared

context for research. In Thailand, a closer examination of student performance across mathematics content domains in PISA reveals that students performed poorly in the domain of "Uncertainty and Data" (OECD, 2023). Similarly, in the most recent TIMSS study in which Thailand participated, in 2015, student performance in the "Data and Chance" domain was the lowest among all mathematics content areas for grade 8 (Mullis et al., 2016). Moreover, a significant decline in achievement was noted between the TIMSS 2007 and 2015 cycles (Mullis et al., 2012; Mullis et al., 2016). A similar trend was observed in Indonesia. In the most recent PISA assessments, the "Uncertainty and Data" domain was also the weakest area for Indonesian students among the mathematics content domains (OECD, 2023). Additionally, statistics-related content poses significant challenges for Indonesian students, as evidenced by the TIMSS study for Grade 4 students in 2015 (Mullis et al., 2016). These challenges highlight the critical need to focus on statistics as a key area for improvement in both countries.

Mathematics, as part of the curriculum, represents the educational opportunities provided to students and shapes their potential learning experiences in the subject (Baba, 2002, 2010; Cai, 2014). Barquero et al. (2023) observed that research on mathematics curricula has been framed using multiple theoretical perspectives, including the three-level model, didactic processes, and sociocultural approaches. Among these, the three-level curriculum model has been the most widely adopted globally. The first level, the intended curriculum, is outlined in documents typically created by national education authorities, specifying expectations for mathematics learning content, including textbooks and standards. The second level, the implemented curriculum, focuses on the teaching and learning activities associated with curricular materials and tasks in schools and classrooms. Finally, the attained curriculum evaluates students' achievements and attitudes, as evidenced by their performance on tasks and assessments (Barquero et al., 2023; Cai, 2014; Hirsch & Reys, 2009; Lloyd et al., 2017). Given the curriculum's influence on educational activities at all stages, studies on the intended curriculum have long been prioritized as it serves as the foundation of the curriculum (Baba, 2002, 2010; Lloyd et al., 2017). The effectiveness of the intended curriculum is closely linked to the attained learning outcomes, as observed in student performance in assessments (Hirsch & Reys, 2009).

For the final inquiry, and in light of the aforementioned foundational questions, it is valuable to consider the Statistical Problem Solving (SPS) process as a framework for gaining deeper insights (Bajaria & Copp, 1987; Bargagliotti et al., 2020). The SPS process has been examined under various terminologies, such as the investigative cycle (Wild & Pfannkuch, 1999) and statistical investigation (Watson, 2006). Despite differences in terminology, these frameworks share the common goal of addressing statistical problem solving comprehensively. The SPS process consists of four fundamental processes: formulating statistical investigative questions, collecting and considering data, analyzing the data, and interpreting the results. Formulating statistical investigative questions that anticipate variability is the foundation for productive inquiries. During the Collecting/Considering Data phase, methods such as random sampling are employed to reduce and detect variability, while experiments with different treatments may introduce variability. After data collection, it is critical to assess the differences among variables, outcomes, and collection methods to assess whether the data can effectively address

the investigative question. Data analysis involves understanding variability through distributions, using graphical displays and numerical summaries to explore and compare the data. Finally, Interpreting the Results entails incorporating variability into statistical interpretations (Bargagliotti et al., 2020). By adopting this perspective, curriculum designers and educators can derive valuable insights to enhance curriculum development and instructional strategies.

Building on the above discussion, this study focuses on the intended statistics curriculum at the elementary level. The intended statistics curriculum refers to the statistical content that students are expected to learn, encompassing the essential knowledge specified in the curricula. By examining this, a clearer understanding of the statistical learning content intended for students can be developed.

Therefore, this study examines the current status of the intended statistics curriculum at the elementary level in Thailand and Indonesia. To achieve this objective, this study poses the following Research Question (RQ): What is the current status of intended statistics curricula at the elementary level in Thailand and Indonesia?

RESEARCH METHODS

Research Design

This study employed qualitative content analysis as the research design. This method was selected because it facilitates the examination of textual data, emphasizing language as a means of communication (Hsieh & Shannon, 2005; Mayring, 2015). Content analysis seeks to provide a deeper understanding and nuanced insights into the phenomenon under examination (Mayring, 2015). In this context, the phenomenon refers to the intended statistics curriculum at the elementary level in Thailand and Indonesia.

Research Procedures

The qualitative content analysis for this study followed the procedures outlined below (Hsieh & Shannon, 2005; Mayring, 2015).

Formulating the Research Question

The research question guiding this study has been outlined earlier.

Gathering the Data

Data for this study were selected using purposive sampling. The primary data sources included two key curriculum documents: Thailand's Basic Education Core Curriculum (MoET, 2017) and Indonesia's Merdeka Curriculum (MoECRT, 2024), both of which focus on the elementary education level. These documents outline the learning content expected of students and were analyzed as primary sources. Since the original documents were written in Thai and Bahasa Indonesia, they were translated into English to facilitate analysis.

Categorizing Data

The learning content from the selected curriculum documents was categorized into constructs, subconstructs, and knowledge and skills, as detailed in Tables 1 and 2. Constructs represent overarching concepts or "big ideas" incorporated within each

grade level. Subconstructs delineate specific concepts under these big ideas (e.g., Fukuda, 2020; Watson et al., 2018) Knowledge and Skills refer to the specific competencies and knowledge that students are expected to acquire.

Analyzing the Categorizing Data

Once the data categorization process was completed, the categorized content was analyzed. The findings of this analysis are presented and discussed in the Results and Discussion section.

RESEARCH RESULTS

In the intended mathematics curriculum, content domains at the elementary level are divided into specific categories that differ across countries. In Thailand, the curriculum divides mathematics content into three domains: numbers and algebra, measurement and geometry, and statistics and probability. In contrast, Indonesia's curriculum comprises five domains: numbers, algebra, measurement, geometry, and data analysis and probability. Notably, both countries explicitly integrate statistics into their mathematics curricula. However, the naming conventions differ: Thailand labels the domain as "Statistics and Probability," while Indonesia uses the term "Data Analysis and Probability," which conveys an equivalent meaning. For consistency, the term "Statistics and Probability" will be used hereafter to denote both labels.

Learning Content in the Intended Statistics Curriculum

The learning content of the intended statistics curriculum is summarized in Tables 1 and 2, which display the current state of the intended statistics curriculum in Thailand and Indonesia.

In Thailand's elementary curriculum, the statistics and probability domain focuses exclusively on data representation. In contrast, Indonesia's curriculum incorporates broader constructs, including data representation, uncertainty, and probability.

In Thailand, the progression from the first to sixth grade reflects a mixed approach, with different statistical concepts introduced and revisited at various stages. While the knowledge and skill levels vary slightly across grades, the intended processes are similar. In the first grade, students are introduced to data representation through reading pictographs. They use data from charts and graphs to answer questions, focusing on single-unit representation in pictographs. In the second grade, the emphasis on reading pictographs continues, but with increased depth. Students work with data represented in multiple units, such as 2, 5, and 10, using charts and graphs to answer questions. In the third grade, the curriculum expands to include data collection and representation. Students collect, classify, and represent data by reading and writing pictographs and creating one-way tables. In the fourth grade, students progress to reading and writing bar graphs and working with two-way tables. They use data from these representations to solve problems. By the fifth grade, line graphs are introduced alongside the continued use of bar graphs. Students read line graphs, solve problems using data from these graphs, and draw bar graphs, thus broadening their graphical representation skills. Finally, in the sixth grade, students are introduced to pie charts. They read and interpret data from pie charts to solve problems. By the end of elementary school, students have developed a comprehensive understanding of various methods of data representation.

Table 1. Learning Content in the Intended Statistics Curriculum in Thailand

Grade Construct Subconstruct Subconstruct Reading pictographs Representation Reading pictographs Representation Representation Data Reading pictographs Representation Representation Representation Data Representation Representation Data Representation Data Representation Data Representation Data Representation Representation Data Representation Data Representation Representation Data Representation Data Representation Data Representation Data Representation Representation Data Representation Data Representation Data Representation Representation Data Representatio	
Representation Representation Data Reading pictographs Representation Representation Representation Representation Data Representation Data Representation Data Representation Representation Representation Representation Data Collection, Representation Representation Representation Representation Representation Representation Data Collection, Representation Classification, reading/writing pictographs, one-way Draw a one-way table from Draw a one-way table from	
given a one-unit pictograph Representation Representation Data collection, Representation Representation Data collection, Classification, reading/writing pictographs, one-way Draw a one-unit, 5-unit, or 10-unit pictograph and use data from the pictograph to solve problems. Draw a pictograph to solve problems. Draw a one-way table from the pictograph to solve problems. Draw a one-way table from the pictograph to solve problems.	ph
2 Data Representation	
Representation Representation To solve problems when given a one-unit, 5-unit, or 10-unit pictograph. Data collection, Preading/writing classification, reading/writing pictographs, one-way a one-way table from the pictograph to solve problems. Draw a one-way table from the pictograph to solve problems.	ph.
given a one-unit, 5-unit, or 10-unit pictograph. 3 Data Data collection, Preading/writing pictographs, one-way Draw a one-way table from the pictograph to solve problems.	ph
3 Data Data collection, Preading/writing pictographs, one-way a pictograph and use solve problems. 10-unit pictograph. Draw a pictograph and use data from the pictograph to solve problems. Draw a one-way table from the pictograph to solve problems.	
3 Data Data collection, Draw a pictograph and use classification, reading/writing pictographs, one-way Draw a one-way table from	or
Representation classification, data from the pictograph to reading/writing solve problems. pictographs, one-way Draw a one-way table from the pictograph to solve problems.	
reading/writing solve problems. pictographs, one-way Draw a one-way table from	<u>se</u>
pictographs, one-way	<u>to</u>
· · · · · · · · · · · · · · · · · · ·	
مناه ومدر الرسو ومدل المستسبب	<u>)m</u>
table <u>numeral data</u> and <u>use its</u>	
<u>data to solve the problem.</u>	<u>l.</u>
4 Data Reading/writing bar <u>Use data</u> from bar	
Representation graphs, two-way table charts/two-way tables to	
solve problems	
5 Data Reading line graphs, <u>Use data</u> from line graphs	s <u>to</u>
Representation reading/writing bar <u>solve problems</u> .	
graphs <u>Draw</u> bar graphs <u>from</u>	
numeral <u>data</u>	
6 Data Reading pie charts <u>Use data</u> from pie charts <u>to</u>	<u>to</u>
Representation <u>solve problems</u> Note: The authors developed and underlined the text in Table 1, based on data from the M	

Note: The authors developed and underlined the text in Table 1, based on data from the MoET (2017).

In contrast, the Indonesian curriculum for the domains of statistics and probability is more systematically divided into distinct phases, with specific subconstructs defining the boundaries of each phase. Table 2 illustrates that the first and second grades share the same subconstruct because they belong to Phase A, while the third and fourth grades are grouped in Phase B. Notably, in Phase C, the fifth and sixth grades have different subconstructs due to the variations in the constructs addressed. This systemic division of subconstructs ensures a clear developmental trajectory for students, focusing on specific aspects of data representation at each phase. In the first grade, Indonesian students begin by classifying objects based on attributes such as fruits and colors. They learn to classify objects, count them using tally marks or numbers, and compare the objects. In the second grade, students continue to develop their data management skills by collecting data through peer and teacher interactions and presenting them using tally marks or pictographs. By the third grade, the focus shifts to more structured data collection methods, such as observations, surveys, and experiments. Students

present the data they collect in tables and learn to explain and compare the data in these tables.

Table 2. Learning Content in the Intended Statistics Curriculum in Indonesia

Table 2. Learning Content in the Intended Statistics Curriculum in Indonesia					
Grade	Indonesia				
	Construct	Subconstruct	Knowledge and Skill		
1	Data	Sort, categorize,	Classify objects, count		
	Representation	compare and present	objects using tally/numbers,		
2	Data	data of many objects	compare objects based on		
	Representation	using tally charts and	attributes		
		pictographs up to four	Collect data, sort/compare		
		categories.	data using tally and		
			pictographs		
3	Data	Sort, compare,	Collect, and present data in		
	Representation	present, analyze and	tables, explain and compare		
		interpret data in the	<u>data</u> on tables		
4	Data	form of tables,	Present data into		
	Representation	pictographs, and bar	pictographs, and bar charts		
		charts (with single-	(with single-unit scale) and		
		unit scale).	interpret data from these		
			charts		
5	Data	Sort, compare,	Collect, sort, compare		
	Representation	present, and analyze	measurement data, present		
6	Data	data of numbers of	data in frequency tables,		
	Representation	objects and data of	pictographs, bar charts (with		
		measurements in the	single-unit or multi-unit		
		form of diagrams,	scale)		
		pictographs, bar			
		charts, and frequency			
		tables to obtain			
		information.			
	Uncertainty	Determine the	<u>Determine</u> the likelihood of		
	and Probability	likelihood of events in	events in a randomized		
		a randomized trial	experiment and		
			Predict what will happen in		
			a randomized experiment		

Note: The authors developed and underlined the text in Table 2, based on data from the MoECRT (2024).

By the fourth grade, Indonesian students are proficient in presenting data in bar graphs (with a single unit scale) and interpreting the data. In the fifth grade, the curriculum emphasizes collecting, sorting, comparing, and presenting measurement data in pictographs, tables, and bar graphs (with single- or multiple-unit scales). In the sixth grade, Indonesian students continue to explore the concepts of uncertainty and probability, which remain integral to the study of statistics. They learn basic probabilities through randomized experiments and predict the probability of events in these experiments.

DISCUSSION

Based on the results, several observations regarding the intended statistics curriculum in Thailand and Indonesia can be made. Initially, a key difference between the two countries is that Thailand does not introduce probability at the elementary level, instead beginning this topic at the secondary school level (see MoET, 2017), even though the curriculum is labeled as "Statistics and Probability." In contrast, Indonesia introduces probability in the sixth grade, at the end of elementary education. Both countries robustly introduced the foundational concepts of statistics at the elementary level, while probability was inadequately introduced from the beginning of the elementary year. This situation aligns with Steinbring's (1988, 1991) observation that probability and statistics are often taught sequentially, with probability introduced after statistics, which can downplay the crucial relationship between the theoretical aspects of probability and the empirical applications of statistics in real-world situations. Innabi et al. (2022) argue that this approach contradicts the inherent nature of statistics teaching, which typically involves two intertwined lines of statistical and probabilistic reasoning. Elbehary (2020) describes this as a conventional method of teaching both statistics and probability under analogous conditions (cf. Australian Curriculum Assessment Reporting Authority [ACARA], 2015; Ministry of Education New Zealand [MoENZ], 2007). Similarly, Kazak and Confrey (2007) explain that in traditional approaches, the connection between probability and statistics is often addressed only in the context of advanced statistical inference, where the concept of probability is applied. This is evident in the curricula of both countries.

Furthermore, the separation of statistics and probability in early education can lead to student difficulties with the abstract nature of probability (Cobb & Moore, 1997; Moore, 1997; Moore & Cobb, 2000). Taylor (2011) highlights the relationship between understanding randomness—central to probability—and applying this understanding to real-world situations in statistics. Probability theory provides a framework for modeling uncertainty, while statistics deals with analyzing data to make sense of that uncertainty. This tension stems from the distinction between the two fields: probability focuses on theoretical models of chance, whereas statistics emphasizes empirical data and practical applications. When probability concepts are introduced later in education without adequate early exposure, students are more likely to develop misconceptions and face challenges in applying probability theory to statistical reasoning. This situation is not unique to Thailand and Indonesia but has also been observed in other countries (Burrill & Pfannkuch, 2024). The conventional approach of teaching statistics and probability sequentially further reinforces this challenge. The asynchronous introduction of these topics is evident not only within the structure of curricula but also in educational practices (Milinkovic & Radovanovic, 2021) and research (Langrall et al., 2017), which highlights the global nature of this educational challenge.

When examining the subconstructs of knowledge and skills, both Thailand and Indonesia place significant emphasis on the SPS process. In Thailand, the curriculum more directly focuses on the interpretation of results. The intended subconstructs emphasize the statistical activities of "reading pictographs or [...]" and "the use data from pictographs or [...] to solve the problem [...]" across all grades. This implies that students are expected to employ statistical evidence from data displays to answer statistical questions. Bargagliotti et al. (2020) note that

interpreting results involves using statistical facts from data collection to answer investigative questions. Indonesia, while similar to Thailand, makes broader progress in data collection, analysis, and interpretation. Students in Indonesia begin with sorting, comparing, and organizing data, then progress to presenting and analyzing data in various formats (tables, pictographs, and bar charts) across all grade levels. These activities align with Bargagliotti et al's. (2020) categorization of the data analysis process, where students are expected to analyze data by identifying key features of data collection. The skills of "presenting data" imply that students will learn to visualize variables using appropriate displays, and when the curriculum asks them to "analyze data of a number of objects," it indicates that students are expected to identify and observe key features of data collection, as described by Bargagliotti et al. (2020) in their framework for analyzing data. The emphasis on "interpreting data from these charts" aligns with the goal of helping students recognize statistical evidence and make conclusions based on data, an essential aspect of the SPS process. However, this process is primarily emphasized for third- and fourth-grade students (as seen in Table 2), and is not explicitly mentioned for the upper grades in Indonesia's curriculum.

Upon a careful review of the curricula in both countries, it is evident that while Thailand and Indonesia both address the SPS process, neither fully incorporates the entire process. For example, in Thailand, the critical stages of Formulating Statistical Investigative Questions and Collecting/Considering Data receive less emphasis, while in Indonesia, Formulating Statistical Investigative Questions and Interpreting the Results are underrepresented in the upper-grade curriculum. This gap in the curriculum may limit students' understanding of the full cycle of statistical inquiry. Practical data analysis involves summarizing datasets through methods such as collecting and sorting data, yet this process seems to dominate the Indonesian curriculum. However, the omission of the initial and final stages of the SPS process—namely, Formulating Statistical Investigative Questions and Interpreting the Results—could hinder students' abilities to engage in and comprehend statistical literacy (cf. Gal, 2002; Watson, 2006). This lack of emphasis may limit students' ability to connect their analyses to real-world contexts, where data-driven decision-making is increasingly important. Students will need a solid understanding of statistics to critically evaluate conclusions drawn from data (e.g., graphs, tables, and inferential statistical data) (Bargagliotti et al., 2020; Fukuda, 2020).

To address these challenges, we propose that curricula in Thailand and Indonesia should be restructured to include a more comprehensive approach to the SPS process. Such a curriculum would not only strengthen students' statistical literacy and problem solving abilities but would also enable them to experience the full range of activities within the SPS process. This would provide students with a more well-rounded understanding of data analysis, setting the foundation for an earlier introduction to probability alongside statistics.

Countries such as Australia and New Zealand have developed curricula that begin with fundamental concepts and progress toward inferential statistics, fostering essential skills in reasoning, argumentation, and critical thinking in statistics education (ACARA, 2015; MoENZ, 2007). New Zealand's curriculum, in particular, is often cited as a global model for statistical curriculum reform and provides a valuable reference for curriculum developers aiming to implement

similar improvements (Elbehary, 2020; Forbes, 2014). Contextualizing these approaches in Thailand and Indonesia could significantly enhance the quality of statistics education in both countries, ensuring a more comprehensive and cohesive development of statistical literacy over the long term.

CONCLUSION

This study explored the current status of the intended statistics curricula in Thailand and Indonesia, classifying students' expected learning content into three categories: constructs, subconstructs, and knowledge and skills. In terms of constructs, Thailand's curriculum emphasizes data representation as the primary focus for elementary students, while Indonesia introduces data representation alongside uncertainty and probability in the final grade. Examining the subconstructs of knowledge and skills through the lens of the SPS process, Thailand prioritizes Interpreting the Results, emphasizing the use of data displays to answer statistical questions. In contrast, Indonesia presents a more progressive approach, beginning with data collection and consideration, moving through data analysis, and concluding with Interpreting the Results. However, less emphasis is placed on this final stage. Both countries' curricula would benefit from encompassing the entire SPS process. Incorporating all stages of the SPS process could significantly enhance students' statistical problem solving competencies, strengthen their understanding of real-world statistical contexts, and equip them to critically evaluate conclusions derived from data investigation.

A key limitation of this study is its focus solely on the learning content in the intended curriculum. It does not delve into other crucial aspects, such as teaching methodologies, evaluation and assessment practices, curriculum resources (i.e., textbooks, teaching materials, etc.), and classroom-level practices. Future research should address these areas to provide a more comprehensive understanding of statistical education in Thailand and Indonesia.

ACKNOWLEDGMENT

This study was supported by JST SPRING (grant number JPMJSP2132).

REFERENCES

Asian Development Bank. (2024). *Asian Economic Integration Report 2024: Decarbonizing Global Value Chains*. Asian Development Bank. https://doi.org/10.22617/SGP240085-2

Australian Curriculum Assessment Reporting Authority [ACARA]. (2015). *Mathematics: Sequence of content F-6*. Retrieved September 2, 2024 from https://www.australiancurriculum.edu.au/media/3680/mathematics_-_sequence_of_content.pdf

Baba, T. (2002). Fundamental study on cultural aspects in mathematics education cooperation. Japan International Cooperation Agency - JICA. https://libopac.jica.go.jp/images/report/11712882.pdf

- Baba, T. (2010). Analysis of the structure of mathematics curriculum in Zambia. *Africa Educational Research Journal*, 1, 41-51. https://doi.org/10.50919/africaeducation.1.0_41
- Bajaria, H. J., & Copp, R. P. (1987). Statistical Problem Solving (SPS). *SAE Transactions*, 1103-1112.
- Bargagliotti, A., Franklin, C., Arnold, P., Gould, R., Johnson, S., Perez, L., & Spangler, D. A. (2020). *Pre-K-12 guidelines for assessment and instruction in statistics education II (GAISE II): A framework for statistics and data science education*. Alexandria, VA: American Statistical Association.
- Barquero, B., Jessen, B. E., Ruiz-Hidalgo, J. F., & Golding, J. (2023). What Theories and Methodologies Are Appropriate for Studying Phenomena Related to Mathematics Curriculum Reforms? In Y. Shimizu & R. Vithal (Eds.), *Mathematics Curriculum Reforms Around the World: The 24th ICMI Study* (pp. 193-217). Springer International Publishing. https://doi.org/10.1007/978-3-031-13548-4 13
- Burrill, G., & Pfannkuch, M. (2024). Emerging trends in statistics education. *ZDM Mathematics Education*, 56(1), 19-29. https://doi.org/10.1007/s11858-023-01501-7
- Cai, J. (2014). Searching for evidence of curricular effect on the teaching and learning of mathematics: some insights from the LieCal project. *Mathematics Education Research Journal*, 26(4), 811-831. https://doi.org/10.1007/s13394-014-0122-y
- Cobb, G. W., & Moore, D. S. (1997). Mathematics, statistics, and teaching. *The American mathematical monthly*, 104(9), 801-823.
- Elbehary, S. G. A. (2020). Providing Insights into the Intended Curriculum of Probability for Basic Education Sector in Egypt from a Comparative Perspective. *International Electronic Journal of Mathematics Education*, *15*(2), em0581.
- Forbes, S. (2014). The Coming of Age of Statistics Education in New Zealand, and its Influence Internationally. *Journal of Statistics Education*, 22(2), null-null. https://doi.org/10.1080/10691898.2014.11889699
- Fukuda, H. (2020). Research towards a Principle for the Statistics Curriculum in Japan from the Perspective of Context (Publication Number 8061) [Doctoral Thesis, Hiroshima University]. https://ir.lib.hiroshima-u.ac.jp/00049358
- Gal, I. (2002). Adults' statistical literacy: Meanings, components, responsibilities. *International statistical review*, 70(1), 1-25.
- González, O., Isoda, M., & Araya, R. (2020). Statistical thinking for the era of big data and artificial intelligence: Toward understanding sustainability trends and issues for the future society. In P. Arnold (Ed.), New skills in the changing world of statistics education: Proceedings of the Roundtable conference of the International Association for Statistical Education (IASE), July 2020, Online. Voorborg, The Netherlands.
- González, O. R. (2023). High school students' conceptions of data-driven argumentation as advocacy when reasoning about variability. *International Journal of Mathematical Education in Science and Technology*, *54*(8), 1746-1759. https://doi.org/10.1080/0020739X.2023.2171924
- Hirsch, C. R., & Reys, B. J. (2009). Mathematics curriculum: a vehicle for school improvement. *ZDM–Mathematics Education*, 41(6), 749-761. https://doi.org/10.1007/s11858-009-0218-0

- Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content Analysis. *Qualitative Health Research*, 15(9), 1277-1288. https://doi.org/10.1177/1049732305276687
- Innabi, H., Marton, F., & Emanuelsso, J. (2022). Stochastic and deterministic views of statistics: A pedagogical perspective. In S. A. Peters, L. Zapata-Cardona, F. Bonafini, & A. Fan (Eds.), Bridging the gap: Empowering & educating today's learners in statistics. Proceedings of the 11th International Conference on Teaching Statistics (ICOTS11 2022), Rosario, Argentina. International Association for Statistical Education
- Kazak, S., & Confrey, J. (2007). Elementary school students' intuitive conceptions of random distribution. *International Electronic Journal of Mathematics Education*, 2(3), 227-244.
- Kurnia, A. B., Lowrie, T., & Patahuddin, S. M. (2024). The development of high school students' statistical literacy across grade level. *Mathematics Education Research Journal*, *36*(1), 7-35. https://doi.org/10.1007/s13394-023-00449-x
- Langrall, C. W., Makar, K., Nilsson, P., & Shaughnessy, J. M. (2017). Teaching and learning probability and statistics: an integrated perspective. In J. Cai (Ed.), *Compendium for research in mathematics education* (pp. 490-525). National Council of Teachers of Mathematics.
- Lloyd, G., Cai, J., & Tarr, J. (2017). Issues in curriculum studies: Evidence-based insights and future directions. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 824-852). National Council of Teachers of Mathematics.
- Mayring, P. (2015). Qualitative Content Analysis: Theoretical Background and Procedures. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to Qualitative Research in Mathematics Education: Examples of Methodology and Methods (pp. 365-380). Springer Netherlands. https://doi.org/10.1007/978-94-017-9181-6_13
- Milinkovic, J. V., & Radovanovic, I. (2021). Probability and statistics—Teaching driven by representation. *Teaching of Mathematics*, 24(1). http://elib.mi.sanu.ac.rs/files/journals/tm/46/tmn46p12-35.pdf
- Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia [MoECRT]. (2024). Regulation of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia Number 12 Year 2024 regarding curriculum in early childhood education, primary education and secondary education. Ministry of Education, Culture, Research, and Technology.
- Ministry of Education New Zealand [MoENZ]. (2007). *The New Zealand curriculum: Achievement objectives by learning area (Set of 8 charts)*. Ministry of Education New Zealand. Retrieved from https://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum
- Ministry of Education Thailand [MoET]. (2008). *Basic education core curriculum B.E. 2551 (A.D. 2008)*. Office of the Basic Education Commission, Ministry of Education, Thailand. Retrieved from http://academic.obec.go.th/images/document/1525235513_d_1.pdf
- Ministry of Education Thailand [MoET]. (2017). Core indicators and core learning content: Mathematics: Revised edition 2017 of the basic education core curriculum B.E. 2551 (A.D. 2008). Office of the Basic Education Commission,

Ministry of Education, Thailand. Retrieved from http://academic.obec.go.th/images/document/1580786328 d 1.pdf

- Moore, D. S. (1997). New pedagogy and new content: The case of statistics. *International statistical review*, 65(2), 123-137.
- Moore, D. S., & Cobb, G. W. (2000). Statistics and mathematics: Tension and cooperation. *The American mathematical monthly*, 107(7), 615-630.
- Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). *TIMSS 2011 international results in mathematics*. International Association for the Evaluation of Educational Achievement.
- Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). *TIMSS 2015 International Results in Mathematics*. International Association for the Evaluation of Educational Achievement.
- OECD. (2023). PISA 2022 results (Volume I): The state of learning and equity in education. PISA, OECD Publishing, Paris.
- Sachs, J. D., Lafortune, G., & Fuller, G. (2024). *The SDGs and the UN Summit of the Future. Sustainable Development Report 2024*. Dublin University Press Dublin, Ireland. https://doi.org/10.25546/108572
- Schmidt, W. H., Cogan, L. S., & Solorio, M. L. (2017). The Missing Link—Incorporating Opportunity to Learn in Educational Research Analyses. In J.-W. Son, T. Watanabe, & J.-J. Lo (Eds.), What Matters? Research Trends in International Comparative Studies in Mathematics Education (pp. 411-418). Springer International Publishing. https://doi.org/10.1007/978-3-319-51187-0 22
- Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: an examination of US mathematics and science content standards from an international perspective. *Journal of curriculum studies*, *37*(5), 525-559. https://doi.org/10.1080/0022027042000294682
- Steinbring, H. (1988). The Theoretical Nature of Probability and How to Cope with it in the Classroom (Institut für Didaktik der Mathematik der Universität Bielefeld: Occasional paper 99, 1988). Bielefeld University, Germany. https://duepublico2.uni
 - due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00021331/The_the oretical_nature_of_probability.pdf
- Steinbring, H. (1991). The Theoretical Nature of Probability in the Classroom. In R. Kapadia & M. Borovcnik (Eds.), *Chance Encounters: Probability in Education* (pp. 135-167). Springer Netherlands. https://doi.org/10.1007/978-94-011-3532-0_5
- Taylor, F. M. (2011). Why teach probability in the elementary classroom. *Louisiana Association of Teachers Mathematics Journal*, 2(1), 1-10.
- Watson, J., Fitzallen, N., Fielding-Wells, J., & Madden, S. (2018). The Practice of Statistics. In D. Ben-Zvi, K. Makar, & J. Garfield (Eds.), *International Handbook of Research in Statistics Education* (pp. 105-137). Springer International Publishing. https://doi.org/10.1007/978-3-319-66195-7_4
- Watson, J. M. (2006). Statistical literacy at school: Growth and goals. Routledge.
- Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. *International statistical review*, 67(3), 223-248.