Some Elementary Combinatory Properties and Fibonacci Numbers

Authors

  • Francisco Régis Vieira Alves Federal Institute of Education, Science and Technology of Ceará
  • Renata Teófilo de Sousa Federal Institute of Education, Science and Technology of Ceará

DOI:

https://doi.org/10.37640/jim.v4i1.1756

Keywords:

Combinatorial Interpretations, Fibonacci Sequence, Identities

Abstract

In general, in the midst of History of Mathematics textbooks, we are faced with a discussion due to curiosity about the emblematic Fibonacci Sequence, whose popularization occurred with the proposition of the reproduction model of immortal rabbits. On the other hand, in the comparison of the multiple approaches and discussions of certain subjects in Elementary Mathematics, in the present work, we highlight combinatorial interpretations that, with the support of a characteristic and fundamental reasoning for the mathematics teacher, can be generalized and formalize some eminently intuitive components. In particular, this work deals with properties derived from the notion of tiling and decomposition of an integer that, depending on the board, will correspond to the numbers of the Fibonacci Sequence. We bring a theoretical discussion supported by great names that research in this area.

References

Alves, F. R. V. (2017). Fórmula de de Moivre, ou de Binet ou de Lamé: demonstrações e generalidades sobre a sequência generalizada de Fibonacci - SGF. Revista Brasileira de História da Matemática, 17(33), 1-16. https://doi.org/10.47976/RBHM2017v17n3301-16

Alves, F. R. V. (2022). Propriedades combinatórias sobre a sequência de jacobsthal, a noção de tabuleiro e alguns apontamentos históricos. Revista Cearense de Educação Matemática, 22(45), 21-43. https://doi.org/10.47976/RBHM2022v22n4521-43

Benjamin, A. T., & Quinn, J. J. (1999). Recounting Fibonacci and Lucas Identities. The College Mathematics Journal, 30(5), 359-366. https://doi.org/10.1080/07468342.1999.11974086

Benjamin, A. T., & Quinn, J. J. (2003a). The Fibonacci numbers-exposed more discretely, Math. Magazine, 76(3), 182–192. https://doi.org/10.1080/0025570X.2003.11953177

Benjamin, A. T., & Quinn, J. J. (2003b). Proofs That Really Count: The Art of Combinatorial Proof. American Mathematical Society.

De-Temple, D. & Webb, W. (2014). Combinatorial Reasoning: An Introduction to the Art of Counting. Wiley and Sons.

Gullberg, J. (1997). Mathematics: from the birth of numbers. Norton.

Hemenway, P. (2005). Divine Proportion: Phi in Art, Nature, and Science. Sterling.

Hoggatt Jr, V. E., & Lind, D. A. (1969). Compositions and Fibonacci numbers. Fibonacci Quart, 7(3), 253-266.

Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications – volume 1. Springer.

Koshy, T. (2019). Fibonacci and Lucas Numbers with Applications – volume 2. Springer.

Singh, P. (1985). The so-called Fibonacci numbers in ancient and medieval India. Historia Mathematica, 12(1), 229–244. https://doi.org/10.1016/0315-0860(85)90021-7

Spivey, M. Z. (2019). The Art of Proving Binomial Identities. Taylor & Francis.

Spreafico, E. V. P. (2014). Novas identidades envolvendo os números de Fibonacci, Lucas e Jacobsthal via ladrilhamentos. Tese (Doutorado) — Universidade Estadual de Campinas, IMECC, São Paulo.

Stillwell, J. (2010). Mathematics and its History. Springer.

Vajda, S. (1989). Fibonacci & Lucas numbers and the Golden Section. Elis Hoowood Limited.

Vorobiev, N. N. (2000). Fibonacci Numbers. Springer.

Wilson, R. & Watkins, J. (2013). Combinatorics: Ancient and Modern. Oxford University Press.

Downloads

Published

2023-05-26